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ABSTRACT
IMPROVING COMPILER CONSTRUCTION EDUCATION

BY RETARGETING AND EXTENDING A
COMPILER FOR EMBEDDED XINU

Liam M. Murphy, B.S.

Marquette University

Compilers are challenging to write and compiler construction is even more
challenging for students to learn. Compiler construction courses are offered at many
universities worldwide, but a trend has emerged among students learning about com-
pilers for the first time. Compiler phases like lexing and parsing tend to be well
grasped by students, but later concepts like type checking, translation, and register
allocation are weak points, which cause many students to perform poorly. This work
presents a useful tool for teaching compiler construction to students who are already
familiar with operating systems concepts.

The Concurrent MiniJava compiler is now compatible with the latest version
of the Embedded Xinu kernel. These two elements combined provide Marquette
University computer science students the opportunity to directly engage with concepts
learned in previous coursework to help improve and increase their understanding of
compiler construction. This work is also applicable to students in other courses, such
as operating systems and computer security, where assembly language is a major topic
of discussion.
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CHAPTER 1

Introduction

1.1 Thesis Statement

A suitable educational compiler, supporting a new architecture, access modi-

fiers, and multi-core concurrency, can be developed from an existing compiler infras-

tructure for use with the Embedded Xinu kernel within a multi-core Raspberry Pi

environment, while retaining the pedagogical simplicity of the original design.

1.2 Overview

There exists a gap in today’s compiler construction education. At Marquette

University, the compiler construction course is taught using a version of an educa-

tional compiler targeting the MIPS architecture. For the benefit of undergraduate

and graduate students, it is important that the compiler construction course be up-

dated to reflect the latest technologies taught in the rest of the computer science

curriculum. A useful tool for this task is the Embedded Xinu operating system,

used in several courses within the computer science course catalog. Marquette stu-

dents studying computer science have a unique educational experience in that they

have a continuous thematic curriculum. Students progress from zero programming

experience to learning basic data structures, to implementing their own embedded

operating system running on real multi-core hardware, to finally implementing their

own object-oriented language compiler that runs under the operating system built in

a previous course. This research presents a tool to create vast learning opportunities

for compiler construction students as well as students studying operating systems and

computer security.

The current discourse within the compiler construction education community

includes an identification of one main problem and several potential solutions. The

main problem is that concepts in compiler construction are difficult for many students

to learn. It is easy for a student to understand the concept of a compiler, in that it

translates source code into machine code, but many of the more complicated ideas
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necessary for a compiler to function do not get understood as easily. The existing

methods that instructors use to teach compiler construction have varying degrees of

success. Because of this, instructors have begun testing various techniques and tools

of instruction to improve their students’ understanding and increase their assessment

scores.

1.3 Contributions

Building upon previous work on the Concurrent MiniJava compiler and exist-

ing computer science curriculum, we present an updated and extended compiler to

improve student success in learning concepts in an upper-division compiler construc-

tion course. We have retargeted the Concurrent MiniJava compiler from the MIPS32

instruction set to ARMv7. This allows the compiler to become compatible with the

latest version of the Embedded Xinu kernel for the Raspberry Pi 3B+ platform. We

have also extended the MiniJava grammar to support the access modifiers, public

and private, for variables and methods.

1.4 Organization

This thesis is organized as follows:

• Chapter 1 introduces the overall problem and our contributions to its solution.

• Chapter 2 introduces background on MiniJava and gives an overview on the

phases of a compiler.

• Chapter 3 explores related work on MiniJava and other educational projects for

compilers.

• Chapter 4 explains the effort to retarget the MiniJava compiler to support the

ARMv7 architecture.

• Chapter 5 details how access modifiers have been added to the MiniJava gram-

mar and the compiler error messages associated with them.

• Chapter 6 explains how MiniJava built-in functions have been implemented
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within the Embedded Xinu kernel and the educational opportunities for under-

graduate and graduate students.

• Chapter 7 briefly explains the challenges faced with this project and how we

overcame them.

• Chapter 8 gives a summary of the contributions of this thesis and offers possi-

bilities for future work.
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CHAPTER 2

Background

2.1 MiniJava

MiniJava is a an educational programming language that is a subset of the

Java programming language. Being a subset of Java, any MiniJava program can be

compiled by an off-the-shelf Java compiler and executed on the Java Virtual Machine.

The MiniJava compiler itself is written in Java and compiles input source files into

the target assembly language, not Java bytecode. Appel and Palsberg’s textbook [1]

uses MiniJava to describe the underlying theory of each phase of the compiler and

how to implement them. Thus, the MiniJava compiler is a suitable semester-long

project for both undergraduate and graduate level courses. The original MiniJava

implementation as described in [1] targets the 32-bit MIPS SPIM simulator, but is

modular enough to allow for reimplementation to a variety of different platforms.

2.2 Concurrent MiniJava

Concurrent MiniJava is the most recent version of the MiniJava language used

at Marquette University to teach undergraduate and graduate level Compiler Con-

struction courses. The MiniJava compiler as described in [1] was extended to support

concurrency features like threads and synchronized methods [2].

2.3 The Concurrent MiniJava Grammar

The Concurrent MiniJava language grammar is a strict subset of the standard

Java grammar. Concurrent MiniJava supports only two primitive types: int and

boolean; a void return type; and a string literal that can only be used as an argu-

ment to a print statement. There is no string primitive or String object. Concurrent

MiniJava supports many of the expected features of Java, however many other fea-

tures, such as garbage collection and floating point data types, are not supported in

this implementation due to the amount of time needed for students to build out such

features. Garbage collection and floating point data types may suitable topics for a

second semester graduate-level compilers course.
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<registration> ::= <prefix> <number> <suffix>

<prefix> ::= "NCC" "-"

<number> ::= <first digit> <last digits>

<suffix> ::= "-" <letter>

| ε
<first digit> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<last digit> ::= <digit> <last digits>

| ε
<digit> ::= <first digit>

| 0

<letter> ::= A | B | C | ... | Z

Figure 2.1: Language of Starfleet registration numbers in pseudo Backus-Naur Form

2.3.1 Context-Free Grammars

Aho et al. [3] show that context-free grammars are defined by the following

four properties:

• A set of terminal symbols, sometimes referred to as tokens

• A set of nonterminal symbols, sometimes referred to as syntactic variables.

• A set of productions, each production consisting of a nonterminal and a sequence

of terminals and/or nonterminals.

• A nonterminal identified as the “start” symbol, sometimes referred to as a goal.

Let us consider an example of a context-free grammar: the language Starfleet

starship registration numbers from Star Trek. It is common knowledge that the

registration number of Captain James T. Kirk’s U.S.S. Enterprise is NCC-1701. The

observant fan will recognize that subsequent iterations of the famed starship have

similar registrations, each a derivative of the original but with the addition of a suffix

letter: NCC-1701-A, NCC-1701-B, NCC-1701-C, NCC-1701-D, etc.

In Figure 2.1, we show the language of Starfleet registration numbers. The

“goal” of this grammar is a registration. Each registration is derived by prefix,
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Compiler Assembler LinkerSource Code Target Machine Code

Figure 2.2: The Process of Language Translation

number, and suffix nonterminals. Both suffix and last digit have epsilon deriva-

tions. In the case of context-free grammars, epsilon, ε signifies an empty string. One

can think of it as the “absence” of that particular production. As an example, the

language of Starfleet registration numbers would accept this string: “NCC-1701”. In

this example, there appears to be no suffix. Rather, we can understand this absense

of a suffix to be the empty string, which is a valid derivation.

Another case to note is the digit nonterminal. A digit can be produced

by a first digit or a “0”. Notice how we can re-use previous nonterminals in

subsequent productions to simplify our grammar. We could easily define digit to

contain the derivations “0”, “1”, ..., “9”. This would be correct, however it would

appear redundant.

2.4 The Phases of a Compiler

This discussion of context-free grammars is important to lay the foundation for

how compilers work. The basic function of a compiler is to be a translator. Compilers

translate from source code written in a high-level programming language to source

code written in a lower-level language like C or assembly. The key to a successful

compiler is the ability to preserve the semantic meaning of the original program after

it has been translated into the target language.

Figure 2.2 shows the process of compilation at a high level. First, the source

program is passed into the compiler. The compiler does some black-box magic and

outputs target assembly code. Then, that assembly code gets passed to the assembler.

The assembler does more black-box magic and creates target machine code. That

machine code gets passed to the linker, where external libraries and object files are

linked together into one executable target machine code file.
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Lexer

Parser

Type Checker

Translation

Instruction Selection

Register Allocation

Code Emission

Tokens

AST

AST with Types

IR

Assembly with Temps

Assembly with Registers

Target Assembly Language

Figure 2.3: Compiler Stages

Modern compilers are not monolithic programs. Generally, they are split into

several modules, or stages. Each stage is responsible for processing the program in

some way until the same program in the target language emerges on the other end.

Depending on the type of compiler, there are usually at least six stages of compilation:

lexing, parsing, type checking, translation, instruction selection, register allocation,

and code emission. Each stage may be broken down into more than one action. Some

compilers may not implement some stages entirely. Figure 2.3 shows a flow diagram

of the main stages of the compiler. We will discuss each of them in more detail.
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2.4.1 The Lexer

The lexer, also called the scanner or tokenizer, is responsible for recognizing

the tokens of a language. The lexer gets its name from the action it performs: lexical

analysis. The easiest way to manually implement a lexer is through the use of regular

expressions and finite state machines (really, you could implement regular expressions

as finite state machines, or use a combination of the two).

The lexer addresses its input file one character at a time. This character stream

gets passed through a set of regular expressions or state machines for each of the

reserved tokens of the language. The set of tokens for a language encompasses both

reserved words and symbols. Examples of MiniJava reserved words include class,

int, void, public, and static. Examples of MiniJava symbols include mathematical

symbols like +, -, and *. Other symbols include {, }, (, ), &, &&, and so on. In most

programming languages, whitespace, areas in the source code that do not contain

text, do not have any syntactic meaning. Whenever the lexer encounters whitespace

symbols characters of strings, it ignores them and accepts the next token. The same

must be said regarding comments. Many, if not all, modern programming languages

have some syntax for handling comments. Some languages, like C, C++, and Java,

allow for both single and multi-line comments. It is the lexer’s job to recognize the

beginning and ending markers for comments and to ignore all other characters between

those markers. Other languages, like Python, only support single line comments.

These can be easier to implement, as the lexer must only ignore characters until the

end of a line.

Lexical analysis also involves deciding the initial types of variables. Lexers

must be able to discern decimal integers from hexadecimal or octal ones. They can

also be used to determine floating point values, strings, and booleans. Whether

or not these types are actually correct given the variable they describe to cannot

be determined by through lexical analysis. This will be done at a later phase of

compilation.
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The output of a lexer is the token stream. As soon as a lexer is able to assign a

stream of characters a token name, it outputs that token to be accepted by the next

phase: the parser. An example of the MiniJava token stream may look like this:

CLASS

ID(HelloWorld)

LBRACE

PUBLIC

STATIC

VOID

MAIN

LPAREN

...

Some design decisions can be made when writing a lexer. One could decide

to treat main as either an identifier or a reserved word. One could decide that all

identifiers are strings until determined otherwise by the parser. The Concurrent

MiniJava compiler treats main as a reserved word and not an identifier, but does

treat all other method names as the latter.

2.4.2 The Parser

The next phase of the compiler is the parser. Parsing is a complicated action

that can be performed with a myriad of techniques. The Concurrrent MiniJava

parser is a LL(1)1 top-down recursive-descent parser generated by the JavaCC parser-

generator tool [4]. We will discuss parser-generators in the last section of this chapter.

From the lexer, the token stream is fed into the parser where it is processed via

syntactic analysis. Syntactic analysis is the operation that processes tokens according

to the rules of a language’s grammar and builds a structure called an abstract syntax

tree. An abstract syntax tree represents the structure of a program’s statements,

1In the best case, our parser parses expressions with a left-lookahead of 1. In some instances, the
parser must look ahead more than one token, but the average case is still one.
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but does not necessarily enforce the correct grammar rules of the source language.

Abstract syntax trees must be structured in order to enforce operator precedence

rules for how language statements get evaluated. They must also be able to detect

erroneous statements and report those errors to the human programmer. The abstract

syntax tree generated by a parser does not necessarily remain immutable. Later stages

of the compiler will operate on the initial AST and store additional information

regarding the contents of the program.

2.4.3 Type Checking

Type checking is the process of semantic analysis, which assigns meaning to

the program represented by an abstract syntax tree. An abstract syntax tree can rep-

resent a syntactically correct program, however that program can be totally incorrect

in its meaning. A famous example of a syntactically correct, yet semantically ridicu-

lous structure is, “colorless green ideas sleep furiously.” This was written by Noam

Chomsky in his book Semantic Structures [5]. Chomsky’s example is a grammatically

correct English sentence, but it has no meaning. The same idea can be seen in many

common programming errors that a human may encounter.

Consider a strongly typed language like Java. Suppose we try to write a Java

program that assigns the string “pizza” to an int. While a variable assignment

statement would be a legal construct according the grammar, the data types on

the left and right hand sides of the statement would not agree with each other.

Consider another example where a variable is being assigned before it is declared.

This would also raise an error. Using a variable in a function call, for example,

is permissible, however a variable cannot be referenced without having first been

declared. During the type checking phase, the compiler builds a symbol table by

scanning through the abstract syntax tree and creating entries for identifiers: class,

function, and variable names. These identifiers become associated with data types

which helps to resolve the types of expressions within statements. By the end of

type checking, the abstract syntax tree will have been decorated with identifier types

and the program will have been checked for any semantic errors. The product is a
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Figure 2.4: Intermediate Representation Simplifies Mapping to Target Architectures

grammatically correct program.

2.4.4 Translation

The translation phase consists of mapping abstract syntax tree nodes to nodes

within the intermediate representation tree. Intermediate Representation can be

thought of as an abstraction of a target assembly language, allowing compilers to

retain a desirable quality of modularity, wherein a single compiler frontend can be

used with any number of compiler backends. In other words, a compiler can process a

single programming language into the machine language of several target architec-

tures, as illustrated in Figure 2.4. Compilers do not need to implement this feature,

however. In situations where a language’s implementation must be specific to a par-

ticular architecture, it does not seem practical to design and implement the notion

of an intermediate representation to which the abstract syntax tree is translated; the

abstract syntax tree can be directly processed into assembly instructions.

2.4.5 Instruction Selection

Instruction selection involves deciding which assembly instructions are needed

to complete the operation represented by a node within the intermediate representa-

tion tree. Typically, the first step is to organize the intermediate representation tree
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into a linear list of chunks. Each chunk, called a basic block, encapsulates an inde-

pendent block of instructions that do an action and branch to another block at the

end of that action. Basic blocks must not contain any intermediate branch actions.

Sometimes it is best to organize these blocks out of order, which can be a technique

for increasing the speed of a program. As long as the blocks are properly constructed,

each block will branch to the correct subsequent block, and so on until the program

terminates.

Once the program has been organized into a series of basic blocks of interme-

diate representation nodes, we must overlay patterns of these nodes in order to work

out which assembly code instructions get written. Each instruction in the instruction

set corresponds to a pattern of intermediate representation nodes. For example, the

ARM add instruction can either add the contents of two registers or it can add the

contents of a register and some constant value. These two operations are represented

by different patterns of IR tree nodes and use different assembly code syntax. This

is the ultimate goal of instruction selection: determine the patterns and choose the

appropriate instructions for each pattern.

An important abstraction of instruction selection is not to immediately deter-

mine which registers are used for any particular pattern. Each assembly instruction

is written using a temporary value representing a register. Assembly code programs

at this stage are generated with an unbounded number of temporaries that will get

resolved into actual register names during the register allocation phase.

2.4.6 Register Allocation

Register allocation is the task of assigning the physical registers to each tem-

porary. This task seems challenging because there are a potentially infinite number

of temporaries and only a finite number of registers. We use techniques such as live-

ness analysis and graph coloring to determine the registers that need to be used in a

specific order.

Liveness analysis is the process that decides which registers are in use through-
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out portions of the program. The register allocator must know an architecture’s

calling convention for caller-save and callee-save registers so that the values within

registers do not get overwritten at inappropriate times. Graph coloring is a technique

that helps to determine the order in which registers can be used within a program.

The pool of temporaries gets processed by the register allocator to produce assembly

instructions that operate on the correct registers at the correct point in the lifetime

of the program.

2.4.7 Code Emission

Code emission is the mechanism that actually writes out the lines of assembly

language into a file. This occurs after the instructions are chosen and the correct

ordering of physical registers is determined. After this final stage of the compiler,

the finished product is the semantically correct assembly code representation of the

compiler’s source language.

2.5 Parser Generators

Parser generators, also called compiler compilers, are useful tools for processing

input source code. These programs can execute the very mechanical task of lexical

analysis and syntactic analysis. Writing lexers and parsers by hand can be very

tedious and time consuming, so tools like JavaCC and Yacc can help automate the

process and eliminate the chance for errors at early stages in the compiler.

Yacc (Yet Another Compiler Compiler) [6] is an example of a parser generator.

Yacc takes a description of the source language grammar and converts it into a C

program that generates an abstract syntax tree. JavaCC is a similar program that

generates a recursive-descent parser written in Java. This program works well within

the Concurrent MiniJava compiler because it helps students to focus more energy on

the later, more challenging phases of the compiler project.

2.6 Summary of Background

In this chapter, we have examined an overview of fundamental ideas necessary

in building a compiler. First, we introduced our source language, MiniJava, and its
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concurrency support. Next, explained context-free grammars and how they can be

used to describe programming languages. Finally, we gave summaries of each of the

phases of the compiler and how they go about transforming human-facing source code

into machine-facing assembly code that runs on a target platform.
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CHAPTER 3

Related Work

3.1 Further Development

The Compiler Construction course at Marquette University is the second half

of a two course sequence in Programming Languages. This course uses the MiniJava

compiler to teach the fundamentals of compiler construction including topics such as

classes of grammars, automata theory, and graph theory. By the end of the semester,

students will have built a full end-to-end compiler that can output assembly code

that executes on real multicore hardware instead of simulators.

3.2 Concurrent MiniJava

The previous iteration of the MiniJava compiler was completed in 2010 by

Adam Mallen at Marquette University. Mallen’s work brought Java-style threads

into the MiniJava language and the Embedded Xinu kernel [2]. This two-part project

had the goal of refactoring Marquette’s Compiler Construction course in order to “in-

crease student interest and motivation” for undertaking coursework where one builds

a working compiler [2]. Mallen’s efforts resulted in a MiniJava compiler that tar-

gets the MIPS implementation of the Embedded Xinu operating system, supported a

wider range of I/O functionality (something that the original MiniJava language from

Appel and Palsberg’s textbook did not), and improvements to Embedded Xinu that

supported multi-threaded object-oriented programming. For eleven years, Mallen’s

Concurrent MiniJava compiler was the tool used in teaching the Compiler Construc-

tion course at Marquette University.

The authors of [2] conducted both qualitative and quantitative assessments

at the conclusion of a semester where Concurrent MiniJava was used during the the

Fall 2009 Compiler Construction course. With the results of those assessments, the

authors saw that student satisfaction increased compared to anecdotal testimonies

collected from students in a section of the same course taught in 2007. Additionally,

average scores for many weekly assignments increased between 2007 and 2009. This



16

supports the authors’ hypothesis that using Embedded Xinu and concurrency features

increases student success.

3.3 Bantam Java

Bantam Java is another compiler course project designed and implemented by

Marc Corliss and E. Christopher Lewis [7]. Similar to MiniJava, Bantam Java is a

subset of the Java language however, Bantam Java has several more features that

MiniJava lacks. Bantam Java supports int and boolean types as well as native and

non-native Java object types. Bantam Java also contains dynamic memory manage-

ment via object instantiation with the new keyword and object deallocation using

garbage collection. As with the MiniJava project, students become introduced to the

Visitor pattern while implementing the components of the Bantam Java compiler.

The authors aimed to accomplish four goals: “carefully-selected features”,

“well-engineered infrastructure”, “comprehensive documentation”, and a “customiz-

able project” [7]. Through these goals, the authors of Bantam Java offer flexibility

to instructors teaching compiler construction courses. The Bantam Java project does

not rely on any particular compiler construction textbook, nor must it remain im-

mutable. The authors provide a full language manual along with a language runtime

environment for x86 Linux machines. Through the compiler’s modular and extensible

design, instructors are given freedom to extend the language’s features or omit certain

compiler modules from their curriculum.

The authors write a second paper about their experiences teaching compiler

construction [8]. They also share feedback from other instructors who have used

Bantam Java at their institutions. Their feedback comes from six instructors at

universities around the world that implemented the Bantam Java compiler in compiler

courses. The instructors and students alike shared that, overall, using the Bantam

Java compiler project helped students to learn critical compiler construction concepts.

Some improvements were made to the compiler as a result of the first paper and of

instructor feedback. The compiler was retargeted to the JVM platform. The grammar
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of the language was extended to support arrays, for loops, increment and decrement

operators, and others, in order to be suitable for graduate-level coursework.

3.4 Teaching Compilers

It is no secret that writing a compiler is a challenging enterprise. A compiler

combines many aspects of computer science into one program, therefore, it can be dif-

ficult for undergraduate students to fully grasp each concept within a single semester.

The goal of improving compiler construction education should be to make learning

compilers as approachable as possible for both undergraduate and graduate students.

There has been some work done in this area, however. Others at universities around

the world have been putting new ideas into practice for helping students come to

grips with the difficult concepts that make compilers work.

Some researchers have been studying different techniques for presenting the

course material, other than the traditional lecture-based approach. Na Wang and

Liping Li from the Shanghai Polytechnic University have designed a compiler con-

struction course with a flipped-classroom approach [9]. The authors have argued that,

through teaching reform, the students would be able to absorb more information in an

environment where students have both online and in-person instruction [9]. The pro-

posed hybrid teaching model includes situations where instructors provide in-person

instruction along with small group discussions [9]. After the class meeting, students

would take online assessments and participate in Q A and discussion activities [9].

The authors argue that such a teaching model ”makes learning more flexible. If the

learners want to acquire knowledge, they don’t have to learn it at a designated place

and time. Online resources provide learners more chances to choose what to learn

and how to learn” [9].

Another approach involves group-based work. Joe Gibbs Politz and Yousef

Alhessi at the University of California San Diego designed a course structure where

the last four weeks of the semester were devoted to groups of graduate students each

implementing separate components of a single compiler [10]. Each team consisted
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of 2-3 students who were given four weeks to implement their chosen compiler com-

ponent. For each component, its respective group had to collaborate with every

other group to make sure that each component interfaced appropriately [10]. The

instructors employed a technique they call mob programming. During mob program-

ming sessions, the instructors led class discussion where designs were compared and

groups were given the opportunity to provide suggestions [10]. After the four week

period, each student completed an assignment that asked students to describe how

they would implement an extension to their group’s component [10]. The outcomes

of these assignments were evaluated in one-on-one oral exams. The feedback collected

by the instructors at the end of the course indicated that the students enjoyed the

group-based design of the coursework, however the students felt that the amount

of coursework was challenging. The authors remarked that future iterations of the

course would involve a project six weeks in duration, rather than only four [10]. The

authors stated, “based on our experience with mob programming and identifying key

concepts through merging student work, we believe that many learning outcomes can

be served through the project model without relying on individual assignments” [10].

John Lasseter from Hobart & William Smith Colleges, argues that using an

interpreter to teach an undergraduate compiler construction course can help solidify

certain compiler concepts [11]. Over the course of several years, Lasseter noticed a

trend in how well students learn and understand compiler construction concepts. He

explains, “students do well with the material on lexing and parsing, but too many

of them begin to struggle during implementation of the semantic analysis phase.

They find overwhelming both the conceptual material underlying type checking, the

details of the visitor pattern in traversing an AST, and the interplay of this traversal

technique with the complexities of a realistic semantic analysis implementation” [11].

His solution is to introduce an interpreter to explain the semantic analysis and code

generation phases of the compiler.

Similar to the Compiler Construction course at Marquette University, Las-

seter’s course uses Andrew Appel’s “Modern Compiler Implementation” textbook
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[11]. Lasseter, however, uses the Tiger language as the source for his semester-long

compiler project. He introduces the interpreter into the course schedule at the point

where students have already implemented their own parsers. The interpreter is used

to enforce ideas regarding traversing an abstract syntax tree, building a symbol table,

and generating assembly code [11]. Rather than writing out JVM bytecode, Lasseter’s

interpreter sets the stage for code generation by showing students how to evaluate

the left-hand side and right-hand side components of expressions. The author does

acknowledge, however, that using interpreters to teach students how to write com-

pilers does have its limitations. Nevertheless, Lasseter believes that this technique

can be applied to other phases of the compiler pipeline, like data flow analysis, and

machine code versus intermediate representation [11].

Doug Baldwin from SUNY Geneso designed a simple, modular compiler for use

in teaching students within a single 14 week semester [12]. Baldwin notices a similar

trend to that of Lasseter [12]. Baldwin notes that compiler projects are cumulative.

Each phase builds upon the previous ones, and students who fail to completely un-

derstand the earlier concepts will inevitably fail at learning any subsequent concepts.

His approach is to design a compiler for a language that is robust enough to pro-

vide opportunities for teaching classic compiler concepts. Baldin’s language, called

MinimL, supports operator precedence, subroutines, variables, and more [12]. These

features are complex enough to generate interesting and challenging assignments that

will help students understand how compilers work.

3.5 Summary of Related Work

In this chapter, we have discussed the previous work done to bring concurrency

to the MiniJava language and Embedded Xinu kerenel. Next, we discussed the Ban-

tam Java language, similar to MiniJava, and how it is being used to teach compiler

construction. Lastly, have described some of the work being done by other computer

science educators throughout the world to improve compiler construction education.

Na Wang and Liping Li from the Shanghai Polytechnic University designed
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a flipped-classroom compilers course and showed that asynchronous learning can be

beneficial for students learning the challenging topics involved with building compil-

ers. Joe Gibbs Politz and Yousef Alhessi at the University of California San Diego

explained their group-based approach to building a classroom compiler, where stu-

dents in small groups collaborated to each build separate compiler modules. John

Lasseter from Hobart & William Smith Colleges wrote an interpreter to help teach

phases of the compiler that his students found most challenging to undeerstand. Doug

Baldwin from SUNY Geneso wrote a compiler for his language called MinimL. Baldin

showed that his compiler was robust, yet simple, allowing his students to learn com-

piler construction in a single semester.

It cannot be overstated that the ideas within compiler construction are complex

and provide significant challenges to students today. Compiler projects are some of

the most involved and complicated pieces of software that a student could write.

Therefore, students can benefit from various techniques that can increase the odds

for academic success.
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CHAPTER 4

Retargeting from MIPS to ARM

4.1 RISC vs. CISC

In the world of processor design, there are two main categories of architecture:

RISC and CISC. RISC processors (Reduced Instruction Set Computer) and their

counterparts, CISC processors(Complex Instruction Set Computer), have different

benefits that make them appropriate for one situation or another. RISC architectures

have the benefit of implementing the minimum set of instructions that allow for

arbitrary computation. Most of these operations need only use one or a small few

clock cycles to complete [13]. This allows for quick, low powered computation, and a

human programming experience that is easy to learn in undergraduate and graduate

courses [14]. RISC processors are a popular choice for embedded systems like routers

[15] and low-power, low-profile devices, like smartphones and single board computers

like the Raspberry Pi [16].

CISC architectures implement a set of instructions that perform more advanced

tasks and may require more than one clock cycle to complete. In the case of the

x86 architecture, instructions can be of variable width. This is in contrast to RISC

instructions, which are of uniform width. CISC architectures, like Intel x86, for

example, pass arguments via the stack with a series of push and pop operations.

RISC architectures, like ARM, pass variables via callee and caller save registers.

4.1.1 Comparing x86 and ARMv7 Assembly Languages

The classic first program for a beginner to write is “Hello, World!” While being

a good test case to ensure a language’s development and runtime environments are

working correctly, it is also a nice example to compare the languages that CISC and

RISC machines speak.

We have written an implementation of “Hello, World!” in the C programming

language and compiled it on an x86-based Linux machine with both the x86 GCC C

compiler and the ARMv7 GCC C cross-compiler. In Figures 4.1 and 4.2, we see the
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1 .file "helloworld.c"

2 .section .rodata

3 .LC0:

4 .string "Hello ,␣world!"

5 .text

6 .globl main

7 .type main , @function

8 main:

9 .LFB2:

10 .cfi_startproc

11 pushq %rbp

12 .cfi_def_cfa_offset 16

13 .cfi_offset 6, -16

14 movq %rsp , %rbp

15 .cfi_def_cfa_register 6

16 subq $16 , %rsp

17 movl %edi , -4(%rbp)

18 movq %rsi , -16(%rbp)

19 movl $.LC0 , %edi

20 call puts

21 movl $0 , %eax

22 leave

23 .cfi_def_cfa 7, 8

24 ret

25 .cfi_endproc

26 .LFE2:

27 .size main , .-main

28 .ident "GCC:␣(GNU)␣4.8.5␣20150623␣(Red␣Hat␣4.8.5 -44)"

29 .section .note.GNU -stack ,"",@progbits

Figure 4.1: “Hello, World!” in x86 Assembly

output of running the GCC compiler with the -S flag, which outputs the resulting

assembly language into a helloworld.s file. The source program listing can be found

in Appendix A.

The x86 compilation output was 29 lines in length. On the eleventh line of

code, we see the stack frame being setup by pushing the previous base pointer to the

stack. Then, we see the address stored in the stack pointer being moved into the base

pointer. Finally, we see the stack pointer being subtracted by 16, the calculated size of

the stack frame. Lines 11-14 of this program show the stack frame being allocated in

memory. The next two lines show space being allocated for the two formal parameters

of the main function, argv and argc, and being stored in memory with offsets from

the base pointer. The next line shows a movl instruction moving data at the .LC0
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label, declared at the top of the file, into register edi. The string "Hello, World!"

is stored at that memory location as a word. The next line calls the puts() function

to print out the string. The final four lines show placing the return value 0 into a

register to be returned, and returning from the function main.

In our source program, we decided to call printf() instead of puts(). Why

did the compiler choose to call puts()? This was an optimization of the GCC com-

piler. It is likely that the C standard library implements printf() as an abstraction

above the Linux system call puts(), so the compiler decided to call puts() directly.

The ARM program is similar to the x86 implementation, but differs in a num-

ber of important ways. Upon first glance, a programmer unfamiliar with the ARM

instruction set would be able to glean the general flow of the program without too

much study. The ARM opcodes follow a similar convention to their x86 counterparts.

By contrast, the ARM register names are simpler than x86, omitting any special

symbols in favor of alphanumeric characters only.

The ARM de-compilation output a total of 45 lines in length. The first nine

lines contain build directives to assist the compiler in linking object files [17]. Lines

11-13 contain the file name, the section delimiter, and the word alignment. Lines

14-22 contain the label .LC0 for the "Hello world!" string. The main function’s

implementation begins on line 23. To start, we see that the frame pointer and link

register registers, fp and lr, are being pushed to the stack. Next, 4 is added to

the address stored within the stack pointer and the result is stored within the frame

pointer. In a later section of this chapter, we will discuss the significance of this line

of the function prologue. The third line shows 8 being subtracted from the stack

pointer. Like x86, this is the calculated size of the stack frame. Next, we see data

being stored in registers r0 and r1 from memory locations offset by 8 and 12 from

the frame pointer. Like in x86, r0 and r1 now contain the formal parameters argv

and argc. Next, a word from memory is loaded into r0. The compiler has decided to

store a reference to the label .LC0 within the label .L3. Again, like the x86 program,
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1 .cpu arm7tdmi

2 .eabi_attribute 20, 1

3 .eabi_attribute 21, 1

4 .eabi_attribute 23, 3

5 .eabi_attribute 24, 1

6 .eabi_attribute 25, 1

7 .eabi_attribute 26, 1

8 .eabi_attribute 30, 6

9 .eabi_attribute 34, 0

10 .eabi_attribute 18, 4

11 .file "helloworld.c"

12 .section .rodata

13 .align 2

14 .LC0:

15 .ascii "Hello ,␣world !\000"

16 .text

17 .align 2

18 .global main

19 .syntax unified

20 .arm

21 .fpu softvfp

22 .type main , %function

23 main:

24 @ Function supports interworking.

25 @ args = 0, pretend = 0, frame = 8

26 @ frame_needed = 1, uses_anonymous_args = 0

27 push {fp , lr}

28 add fp , sp , #4

29 sub sp , sp , #8

30 str r0 , [fp , #-8]

31 str r1 , [fp , #-12]

32 ldr r0 , .L3

33 bl puts

34 mov r3 , #0

35 mov r0 , r3

36 sub sp , fp , #4

37 @ sp needed

38 pop {fp , lr}

39 bx lr

40 .L4:

41 .align 2

42 .L3:

43 .word .LC0

44 .size main , .-main

45 .ident "GCC:␣(Fedora␣7.1.0 -5. el7)␣7.1.0"

Figure 4.2: “Hello, World!” in ARMv7 Assembly
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MIPS ARM
Total Registers 32 16

Caller Save (non-volatile) 12 4
Callee Save (volatile) 10 7

Word Size 4 bytes (32 bits) 4 bytes (32 bits)

Table 4.1: MIPS and ARM Architecture Specifications

the compiler has chosen to call the puts() system call in lieu of printf(). The

following two mov instructions place 0 into register r0 to be returned at the bottom

of the function. The function epilogue contains instructions that destroy the stack

frame by moving the stack pointer, popping the frame pointer and link register off of

the stack, and branching to the address stored in the link register.

4.2 MIPS vs. ARM: An Overview

MIPS, specifically MIPS32, is a RISC (Reduced Instruction Set Computer)

architecture that contains 32 general purpose registers and 32 floating point registers.

MIPS processors are used in general-purpose computers like desktops, but are also

used in embedded applications [18]. Table 4.1 compares architecture specifications

between the MIPS and ARM 32-bit architectures. While the MIPS architecture

contains more registers for the compiler to allocate for use in a program, the ARM

architecture can implement the same programs using half of the number of registers.

This is not to say that ARM-targeted compilers produce smaller binaries or that

MIPS processors can execute programs faster. We are simply making the point that

processors can be designed such that they do not need to contain an identical number

of registers from architecture-to-architecture or brand-to-brand.

4.2.1 Comparing MIPS and ARM Stack Frames

The stack frame, also called an activation record, is an area in memory that

contains the the local variables and instructions for a function call. In any program,

there may be situations where a function could be called just once or perhaps sev-

eral times. In either situation, each time a function is called, a new stack frame is

pushed onto the call stack of the program. As a corollary, this is the reason that

recursive functions, written in imperative, block-based languages, are expensive to
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run. Each initial invocation of a recursive function, depending on its implementation,

may create an exponential number of stack frames before returning the final result.

Modern operating systems implement stack protection mechanisms to prevent a run-

ning program from exceeding a certain amount of stack space. If a running program

exceeds its allotted block of stack space, a stack overflow error can be triggered and

the program will crash.

Each architecture implements a different convention for stack frames. As we

discussed earlier in this chapter CISC and RISC architectures are rather different. As

such, they have different stack frame conventions. Since MIPS and ARM are both

RISC-based architectures, their stack frames are slightly different, but are largely

semantically similar.

Figure 4.3 shows the output from compiling a simple “Hello World” program

with the Concurrent MiniJava compiler for the MIPS platform. Figure 4.4 shows

the output from the same program compiled with the Concurrent MiniJava compiler

for ARM. At first glance, we notice that the MIPS version is considerably longer

than its ARM counterpart. However, the structure of each program is still the same.

We have been able to keep the same labeling scheme between both architectures.

The noticeable differences are in the opcode names and syntax, the function calling

conventions, and lack of push/pop notation in the MIPS program. Another glaring

difference is how many registers the MIPS compiler uses in the stack frame prologue

and epilogue. The MIPS program makes three calls to values in memory to store and

load at the beginning and end of the stack frame. This action gets replaced by the

push/pop notation in the ARM implementation. This reduction in complexity can

be helpful to students who are still uncomfortable with reading programs written in

assembly language. It can be non-intuitive to dissect how words are being loaded and

stored from offsets to other locations in memory. While this concept still exists in

more complex programs compiled to ARM, every effort to redeuce student confusion

will help them with concept comprehension in the long term.
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1 #include <mips.h>

2 .data

3 L0: .asciiz "Hello␣world!\n"

4 .text

5 .align 4

6 .globl main

7 main:

8 main_framesize =16

9 addiu sp , sp , -main_framesize

10 sw ra , -12+ main_framesize(sp)

11 sw s0 , -8+ main_framesize(sp)

12 sw s1 , -4+ main_framesize(sp)

13 move s1 , s2

14 move s0 , s3

15 move a3 , s4

16 addiu v0 , sp , main_framesize

17 move a2 , v0

18 L2:

19 la a0 , L0

20 jal _print

21 // Call sink

22 move v0 , zero

23 L1:

24 addiu v1 , sp , main_framesize

25 move v1 , a2

26 move s4 , a3

27 move s3 , s0

28 move s2 , s1

29 lw s1 , -4+ main_framesize(sp)

30 lw s0 , -8+ main_framesize(sp)

31 lw ra , -12+ main_framesize(sp)

32 // return from main

33 addiu sp , sp , main_framesize

34 jr ra

Figure 4.3: “Hello World!” Output From the MIPS Concurrent MiniJava Compiler
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1 #include <arm.h>

2 .section .data

3 L0: .asciz "Hello␣world!\n"

4 .section .text

5 .align 4

6 .globl main

7 main:

8 #define main_framesize 8

9 push { fp , lr }

10 add fp , sp , #4

11 sub sp , sp , #main_framesize

12 L2:

13 ldr r0 , =L0

14 bl _print

15 // Call sink

16 mov r0 , #0

17 L1:

18 // return from main

19 sub sp , fp , #4

20 pop { fp , lr }

21 bx lr

Figure 4.4: “Hello World!” Output From the ARM Concurrent MiniJava Compiler

4.3 Implementing an ARM Backend

The existing Concurrent MiniJava compiler architecture lends itself well to

being retargeted. Since the compiler implements an intermediate representation,

we can borrow the structure of our ARM implementation from the existing MIPS

implementation.

4.3.1 Directory Structure

The back-end directory structure relies on two main modules: the Frame pack-

age and the Arm package. In Figure 4.5, we can see the similarities between the Mips

and Arm packages. The main driver class of the compiler must explicitly choose

which back-end to use when translating the type-checked abstract syntax tree into

the intermediate representation. In the translation phase, the implementation of some

abstract syntax tree nodes must call functions declared within the compiler’s repre-

sentation of a stack frame. As previously discussed, each architecture implements a

different calling convention from one another and makes different decisions for how

assembly code is written. At translation time, we must decide whether we want to
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Frame/ Mips/ Arm/

/Access.java /InFrame.java /InFrame.java

/Frame.java /InReg.java /InReg.java

/MipsFrame.java /ArmFrame.java

/Codegen.java /Codegen.java

Figure 4.5: Back-end Directory Structure

compile our intermediate representation to MIPS or ARM assembly. Thanks to Java,

our implementation language, we can use abstraction and inheritance to make our

implementation easier.

4.3.2 Code Reuse

The Frame package contains a Frame abstract class that contains abstract

method headers that an architecture-specific stack frame package must implement.

The Access abstract class represents . This design allows for an extensible back-end

suite and allows the compiler to support multiple architectures concurrently without

needing to recompile.

In either the Mips or Arm packages, the most important files are MipsFrame.java,

Codegen.java, ArmFrame.java, and Codegen.java respectively. The MipsFrame and

ArmFrame classes contain the implementation of a stack frame for that particular ar-

chitecture. The ARM stack frame implementation contains a constant for the word

size of the architecture, arrays of Temps (temporaries) for each register and whether

they are special (frame pointer, stack pointer, link register, etc.), argument registers,

caller/callee save, and colorable. Some of the important helper methods found within

this class are externalCall(), assignCallees(), and procEntryExit().

Figure 4.6 shows the implementation of the externalCall() method within

the ArmFrame class. This method allows the code generator to call Xinu system calls

within MiniJava programs. Xinu system calls are prefixed by an underscore. For

example, the externalCall() is invoked when a programmer calls Xinu.print() or
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1 public Tree.Exp externalCall(Symbol s, List <Tree.Exp > args) {

2 Label l = labels.get(s);

3 if (l == null) {

4 l = new Label("_" + s.toString ());

5 labels.put(s, l);

6 }

7 return new Tree.CALL(new Tree.NAME(l), args);

8 }

Figure 4.6: externalCall() Definition in ArmFrame

when a programmer writes a synchronized. Both instances map to a Xinu system

call defined in the minijava.c API.

Figure 4.7 shows the implementation of the assignFormals() and assignCallees()

methods within the ArmFrame class. Since they are private helper functions, they

cannot be called outside of the ArmFrame class. Both assignFormals() and assign-

Callees() recursively resolve either formal parameters or callee-save registers for an

ARM stack frame. A particularly interesting case is the behavior of assignCallees().

When assignCallees() is called, it treats each callee-save register as a “live” register

and moves them into temporaries within each stack frame. It is the job of the register

allocator to determine which callee-save, if any, is redundant or unused and to remove

it from the internal representation before emitting the final assembly code. A more

sophisticated implementation of a stack frame might keep track of the callee-save

registers for each frame and allocate the correct number before the register allocator

is invoked.

Figure 4.8 lists the method that gets called in the first stage of setting up

the prologue of a stack frame. The body of the method is passed in and state-

ments that handle the formal parameters and callee-save registers are added to it.

In the main driver file for the compiler, procEntryExit1() is called during the code

generation phase. It is at this point when the stack frame begins to take shape.

procEntryExit2() and procEntryExit3() are invoked during the register alloca-

tion phase. After code generation, each statement in the stack frame operates on

temporary registers. The job of procEntryExit2() is to mark the return point of
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1 private void assignFormals(Iterator <Access > formals , Iterator

<Access > actuals , List <Tree.Stm > body) {

2 if (! formals.hasNext () || !actuals.hasNext ()) return;

3
4 Access formal = formals.next();

5 Access actual = actuals.next();

6
7 assignFormals(formals , actuals , body);

8
9 if (formal != actual)

10 body.add(0, MOVE(formal.exp(TEMP(FP)), actual.exp(

TEMP(FP))));

11 }

12
13 private void assignCallees(int i, List <Tree.Stm > body) {

14 if (i >= calleeSaves.length)

15 return;

16
17 Access a = allocLocal ();

18
19 assignCallees(i + 1, body);

20
21 body.add(0, MOVE(a.exp(TEMP(FP)), TEMP(calleeSaves[i])));

22 body.add(MOVE(TEMP(calleeSaves[i]), a.exp(TEMP(FP))));

23 }

Figure 4.7: assignFormals() and assignCallees() in ArmFrame

1 public void procEntryExit1(List <Tree.Stm > body) {

2 assignFormals(formals.iterator (), actuals.iterator (),

body);

3 assignCallees (0, body);

4 }

Figure 4.8: procEntryExit1() Definition in ArmFrame



32

a function for the human programmer with a comment. This helps the programmer

to easily identify each point where a function may return control to the rest of the

program. procEntryExit3() has the bigger role of creating the function prologue

and epilogue. The function prologue contains the code text section header informa-

tion, the stack frame size, and the function label. The most operative sections of

the prologue are the lines that allocate space on the stack for the frame and stack

pointers. The function epilogue contains the instructions for deallocating the space

for the stack frame and branching to the instruction immediately after the call to the

function. The implementations for procEntryExit2() and procEntryExit3() can

be found within Appendix C.

4.3.3 Optimizations

The Concurrent MiniJava compiler contains a small number of arithmetic op-

timizations to increase the speed of certain calculations. In the ARM instruction set,

most opcodes do not require more than a single clock cycle to complete [19]. However,

it is a desirable educational opportunity for students to see how optimizations can be

made to improve the performance of a compiler’s output.

In Codegen.java, the code generator for each architecture, binary operations

are associated with their assembly opcode counterparts. When certain arithmetic

operations are being compiled, a check is done to see if the operand of either a

multiply or divide is a power of 2. If this is true, in the case of a multiplication

operation, the operand is shifted left the number of bits as its power of two. For

example, if we want to multiply 8 by 2, our compiler will shift 8 left one bit rather

than using the mul opcode. The shift algorithm is given below:

private static int shift(int i) {

int shift = 0;

if ((i >= 2) && ((i & (i - 1)) == 0)) {

while (i > 1) {

shift += 1;

i >>= 1;

}

}
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return shift;

}

For architectures that do not implement a multiply or divide opcode, repeated

addition or subtraction could be used to achieve those operations. In that case, this

sort of bit shifting optimization would increase the speed of that particular program

since looping via branching is more expensive.

4.4 Educational Opportunities for Compilers and Security Students

Given this overview of our effort to retarget the Concurrent MiniJava compiler

from the MIPS architecture to the ARM architecture, we must ask, “what does

this achieve?” We know from our review of the literature, compiler construction

is a rather difficult subject for students to grasp in a mere one semester course.

As we will discuss further in Chapter 6, Marquette University students studying

computing-related fields will learn about operating systems by implementing portions

of the Embedded Xinu kernel. We choose to port Concurrent MiniJava to ARM

because the latest version of Embedded Xinu runs on ARM-based Raspberry Pi 3B+

computers. It is a worthwhile exercise to target this platform because it is rich with

classroom and research opportunities. At Marquette University, Embedded Xinu has

been used to teach operating systems [20], elements of computer security [14], elements

of networking [21], and previous iterations of the compiler construction course [2].

For students recently completing other courses where ARM Embedded Xinu

is used, moving into the MiniJava environment can be easier than if the compiler

was still the MIPS version. Carrying previous knowledge from course to course will

help students retain new information. Writing a compiler is largely an exercise in

pattern matching. A compiler accepts a program in text form, recognizes patterns

in characters, and applies those patterns to a grammar. It takes those structures

recognized by the grammar and constructs a tree encapsulating the semantics of the

original program. It manipulates that tree and uses it to output another piece of text

with equivalent meaning. If a student is already familiar with how system calls are
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implemented in Embedded Xinu, understanding the MiniJava API and ARM calling

conventions will be easier than learning a new architecture altogether.

Similarly, the exposure to a familiar assembly language helps students learning

about decompiling binaries to analyze their vulnerabilities. A common exercise for

students learning about computer security is to examine a decompiled executable to

attempt to work out the function of the source code. A computer security instructor

could use the Concurrent MiniJava compiler to provide to students ARM assembly

code and the MiniJava API and ask them to analyze the program to figure out its

function. More advanced courses might ask students to write MiniJava programs to

attempt to uncover vulnerabilities within the Xinu kernel.
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CHAPTER 5

Extending the Grammar With Access Modifiers

5.1 Access Modifiers in Java

Access modifiers are useful tools in helping to enforce encapsulation within

object-oriented languages. In the Java language, access modifiers take the form of

public, private, and protected “modes”, denoted with the aforementioned key-

words. Java also has the notion of the “default” access modifier. Unlike public,

private, and protected, there is no discrete keyword to indicate that a variable,

method, or object falls under the default access. When declaring one of these lan-

guage structures, the programmer need only omit an access modifier to assign that

structure the default access mode. Consider the following Java program:

Figure 5.1 contains two classes, A and B. Class B contains three private integer

fields, x, y, and z. These fields are instantiated within B‘s constructor. Within the

main method of class A, a new object of type B is declared. On the last line of the

main method, we intend to access the x field of B and print it to the console. However,

when we attempt to compile this program, the compiler throws a syntax error:

error: x has private access in B

System.out.println(objB.x);

^

This shows us an example of encapsulation within the Java language. Fields

x, y, and z are encapsulated within and are not meant to be accessed outside of class

B. The same idea can be applied to Java methods.

In Figure 5.2, classes C and D are defined. Class D contains two integer fields,

i and j, with default access. Public method foo and private method bar are also

defined and are called within the main method of class C. Much like the example

shown in Figure 5.1, the call of method bar will cause a compile-time error. However,

the call of method foo would succeed in executing if not for the error on the line
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1 class A {

2 public static void main(String [] args) {

3 B objB = new B();

4 /* The line below will cause a compile -time error */

5 System.out.println(objB.x);

6 }

7 }

8 class B {

9 private int x;

10 private int y;

11 private int z;

12
13 public B() {

14 this.x = 5;

15 this.y = 6;

16 this.z = 7;

17 }

18 }

Figure 5.1: Illegal private field access

1 class C {

2 public static void main(String [] args) {

3 D objD = new D();

4 System.out.println(objD.foo());

5 System.out.println(objD.bar());

6 }

7 }

8
9 class D {

10 int i;

11 int j;

12
13 public D(int i, int j) {

14 this.i = i;

15 this.j = j;

16
17 this.j = this.bar();

18 }

19
20 public int foo() {

21 return this.i;

22 }

23
24 private int bar() {

25 return this.i * this.j;

26 }

27 }

Figure 5.2: Public and private method access
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below. Private methods are meant to be called only within the class in which they

have been defined. Private fields, on the other hand, can be accessed outside of their

classes through the use of setter and getter methods. These methods would be given

public access and would set and return the values of private fields. In this way, the

programmer can preserve encapsulation and, thus, the security of the program as a

whole.

Declaring all fields and methods with public access is not always a desirable

design decision. When classes become components of larger systems, it becomes

necessary to create a design where information can be kept hidden from outside

modules and outside entities. This feature allows the programmer to write secure

object-oriented code.

5.2 Adding Encapsulation to MiniJava

Adding encapsulation in the form of access modifiers to the Concurrent Mini-

Java language is done within both the Parsing and Type Checking phases of the

compiler. We have modified the Concurrent MiniJava grammar to consider public

and private as reserved words. Additionally, we have modified the notion of a base

type. Within the Concurrent MiniJava grammar, a type can be either a boolean, an

integer, an identifier (for a class/object), or the array variant of either of these. A

base type is the non-array variant of a type. We made this design decision in order to

associate the notion of an access modifier with the primitive variable or object itself,

rather than distinguish between public/private arrays and public/private integers,

booleans, or objects. In addition to public and private variables, Concurrent Mini-

Java now supports public and private methods. In a similar way to that of modifying

the grammar to keep track of an access modifier flag for base types, a access modi-

fier flag has been added to the abstract syntax tree classes for method declarations

(MethodDecl) and void declarations (VoidDecl).

To modify the grammar, we introduce the notion of an AccessType. Figure

5.3 shows a subset of the Concurrent MiniJava grammar that defines an AccessType.
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<Type> ::= <BaseType> ( "[" "]" )*

<AccessType> ::= "public" | "private"

<BaseType> ::= ( <AccessType> )? <BaseType>

| "boolean"

| "int"

Figure 5.3: AccessType Grammar Rules

An AccessType is an optional (zero or one) non-terminal that comes before the dec-

laration of a BaseType. This is an optional non-terminal. Examples of valid Type

declarations include:

public int foo; public boolean oof;

private int bar; private boolean rab;

int baz; boolean zab;

Method declarations are modified in a similar fashion. The grammar distin-

guishes between a MethodDeclaration and a VoidDeclaration. MethodDeclarations

require a return type and a return expression. VoidDeclarations do not have these

requirements. To add access modifiers to these non-terminals, their production rules

are changed by simply adding an optional AccessType to the beginning of each pro-

duction:

<MethodDeclaration> ::= ( <AccessType> )? ( "synchronized" )? <Type>

"(" ( <Type> ( "," <Type> )* )? ")"

"{" ( <VarDeclaration> )*

( <Statement> )* "return" <Expression> ";" "}"

<VoidDeclaration> ::= ( <AccessType> )? "void" "(" ")" "{"

( <VarDeclaration> )* ( <Statement> )* "}"

In order to keep track of whether an identifier or method is public or private,

we implement an additional constructor for each of the following abstract syntax tree

classes: MethodDecl, VoidDecl, IntegerType, BooleanType, and IdentifierType.

The abstract class Type gains an additional field, isPrivate, that IntegerType,
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BooleanType, and IdentifierType inherit. This simple flag, included in the over-

loaded constructor, stores the access modifier status that gets checked during the type

checking phase of the compiler.

The Type classes to be used during type checking have also been modified

to include an isPrivate field. This allows the symbol table to store the access

modifier status for each identifier and method name. When method and field access

expressions are type checked, the value of isPrivate is also checked. If a private

field is trying to be accessed outside of its class, the type checker raises an error and

halts the remainder of the compiler’s pipeline execution.

Consider a simple MiniJava program. Given two classes, A and B, an object

of type B is declared within the main method of class A. Suppose B objects contain

a private integer field x. If class A contains a statement that tries to access x, the

following error would be raised by the compiler:

ERROR cannot access private field ‘x‘ outside of OBJECT:B:

FieldExpr(

NewObjectExpr(IdentifierType(B))

x)

A similar error message is raised if a private method tries to be called outside

of its class. Suppose class B has a private method called getX(). If getX() is called

on B inside of class A, the following error would be raised:

ERROR cannot call private method getX outside of class OBJECT:B:

CallExpr(

NewObjectExpr(IdentifierType(B))

getX

AbstractList())

Access modifiers are a simple language feature that adds built-in protections

to the language. For the MiniJava use case, they can be an instructive tool for both

beginner and advanced students alike. For less-experienced students, the smaller
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language set that MiniJava offers can be less intimidating. The notion of a public

or private variable can be seen in a smaller environment than an example written

in Java. For more experienced students, like graduate students, implementing access

modifiers into a compiler can be a useful way to test a student’s understanding of

this language feature and can show a student how information moves throughout the

compiler pipeline.
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CHAPTER 6

Integrating with Embedded Xinu

6.1 Porting Concurrent MiniJava Built-In Functions

The previous effort to add MiniJava support to the Embedded Xinu kernel

was completed in 2010 by Adam Mallen [2]. Since that time, the Embedded Xinu

kernel has been ported to new ARM-based platforms [15]. With that effort comes

the challenge of refreshing decade-old code and integrating it with an incompatible

“modern” Xinu kernel. Thankfully, the effort to revamp the old MiniJava API to

the most current version of Xinu was not insurmountable. The algorithms previously

written to allocate new objects, to create new MiniJava threads, and to lock and

unlock monitors could be rewritten largely identically.

The largest difference between the two versions of Embedded Xinu was that

the legacy version, running on MIPS-based Linksys routers, was not a multicore

operating system. The Linksys routers used single core processors, so that version of

Xinu had no notion of multi-core scheduling. In order to allow MiniJava to achieve

real concurrent programming capabilities, the procedure for creating new MiniJava

threads had to be modified to include the processor core on which that thread would

run.

Figure 6.1 shows the updated threadCreate MiniJava API function support-

ing multi-core threading. We introduce a näıve round-robin method to spawn each

new thread on a separate core. Using a static integer nextcore, we start the first

thread on core 0, which contains the main MiniJava program’s process. Each suc-

cessive thread that gets created in MiniJava gets started on the next core, in order,

until all four cores contain a thread. Then, we wrap around to core 0 and start the

process over. Without this round-robin mechanism in thread creation, each thread

would run on the same core as the main program. Threads executing synchronized

methods would not experience true concurrency and Xinu’s notion of monitors would

not correctly enforce mutual exclusion among running threads. In fact, concurrently
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1 syscall _threadCreate(int *threadObjAdder)

2 {

3 // back up one word to point to vtable pointer

4 int *A = threadObjAdder - 1;

5 // point to first entry of vtable

6 int *B = (int *)*A;

7 // point to first method ’s actual code

8 int *C = (int *)*B;

9 void *procadder = (void *)C;

10 static int nextcore = 0;

11 nextcore = (nextcore + 1) % 4;

12 return

13 ready(create

14 (procadder , INITSTK , INITPRIO , "MiniJavaThread", 1,

15 threadObjAdder), RESCHED_NO , nextcore);

16 }

Figure 6.1: Round-robin Thread Creation in Embedded Xinu

running threads would not exist at all.

Mallen’s monitor module from MIPS Xinu needed some work to make it com-

patible with ARM Xinu. Monitors are the tool by which Java threads can operate

with mutual exclusion. Monitors are similar to binary semaphores in that they can be

locked to prevent other resources attempting to control it. The Xinu implementation

of a monitor uses a semaphore for this purpose. A monitor is also able to keep track

of the number of times it has been locked by its owning thread. This is useful because

it determines whether a monitor is owned or unowned. If it is unowned, it can be

locked by another thread. There are a fixed number of monitors allocated by Em-

bedded Xinu. Since the previous monitor implementation did not have knowledge of

more than one core, the monitor lock and unlocking operations had to call upon the

table of currently running processes for its owning core to determine which process

would own a particular monitor.

Figure 6.2 shows the monitor locking action found in Embedded Xinu’s lock.c.

If a monitor has not been allocated, its owner process is set to NOOWNER. The owner

becomes the currently running process on that process’ core. To show that the mon-

itor had a locking action performed, its counter is incremented and then the process
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1 monptr = &montab[mon];

2
3 /* if no thread owns the lock , the current thread claims it */

4 if (NOOWNER == monptr ->owner)

5 {

6 /* current thread now owns the lock */

7 monptr ->owner = currpid[cpuid];

8 /* add 1 "lock" to the monitor ’s count */

9 (monptr ->count)++;

10 /* this thread owns the semaphore */

11 wait(monptr ->sem);

12 }

13 else

14 {

15 /* if current thread owns the lock increase count; dont wait

on sem */

16 if (currpid[cpuid] == monptr ->owner)

17 {

18 (monptr ->count)++;

19 }

20 /* if another thread owns the lock , wait on sem until monitor

is free */

21 else

22 {

23 wait(monptr ->sem);

24 monptr ->owner = currpid[cpuid];

25 (monptr ->count)++;

26 }

27 }

Figure 6.2: Locking a Monitor
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waits on the monitor’s semaphore. Otherwise, if the monitor is already owned by a

process, we just increment the counter; it is not necessary to wait. If we want to lock

another thread’s monitor, we must wait until the monitor’s semaphore allows us to

acquire it.

Unlocking a monitor is a simpler. We can know if a monitor is locked because

its counter will be greater than zero. If we unlock a monitor, we decrement its

counter by one. If, after this decrement, the monitor’s counter becomes zero, we reset

its owner to the NOOWNER macro and signal its semaphore to notify another process

potentially trying to access it.

This lock/unlock action enforces mutual exclusion among threads. Since Mini-

Java is a subset of Java, each construct in the language is itself an object. Therefore,

at the time of creation, each object gets allocated its own monitor. For a full code

listing of the MiniJava API, including creating a new object, see Appendix B.

6.2 Implementing lock and unlock System Calls During Translation

In order to successfully enforce method synchronization among threads, we

must use the lock and unlock functionality described above. This occurs during the

translation phase of the compiler. The translation phase consists of mapping type-

decorated abstract syntax tree notes to instructions in the compiler’s intermediate

representation. Within the act of translating a method declaration (MethodDecl),

we must check to see if that method is synchronized. Synchronized methods contain

a boolean attribute synced. If a method’s synced attribute is true, we wrap that

method boy with an external call to lock() and unlock(). To do this, we add a

call to lock() into the beginning of the method’s body and pass lock() the this

pointer of the method’s parent class. See Figure 6.3 for the implementation of this

action. The lock function in the MiniJava API takes a pointer to an object as its

argument. The this pointer serves the role of pointing to the object that contains

the implementation of the synchronized method. The MiniJava API then locks the

monitor associated with the object.
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1 if (m.synced) {

2 Absyn.ThisExpr t = new Absyn.ThisExpr ();

3 args.add(t.accept(this).unEx());

4
5 body = SEQ(body , EXP(frame.externalCall(Symbol.get("lock"),

args)));

6 }

Figure 6.3: Appending a Call to lock() to the Body of a Synchronized MethodDecl

1 if (m.synced) {

2 Temp tmp = new Temp();

3
4 /* evaluate return expression and move to temporary location

*/

5 Exp rv = null;

6 rv = m.returnVal.accept(this);

7
8 /* Exp tmpmove = new Nx(new Tree.MOVE(new Tree.TEMP(tmp), rv.

unEx())); */

9 body = SEQ(body , MOVE(TEMP(tmp), rv.unEx()));

10
11 /* do unlock */

12
13 body = SEQ(body , EXP(frame.externalCall(Symbol.get("unlock"),

args)));

14
15 /* move return expression back into R0 */

16 rv = new Nx(new Tree.MOVE(new Tree.TEMP(frame.RV()), new Tree

.TEMP(tmp)));

17
18 body = SEQ(body , (MOVE(TEMP(frame.RV()), TEMP(tmp))));

19 }

Figure 6.4: Appending a Call to unlock() to the Body of a Synchronized MethodDecl

Inserting a call to unlock() is not as simple as what we see above. We must

place the call to unlock() after the return statement of the method. This creates a

problem, however. If we evaluate the return statement, we leave the method entirely

and never perform the unlocking action. In order to get around this problem, we

evaluate the return expression and move it into a temporary location within the stack

frame. Then, we perform the unlock. Afterwards, we move the return expression back

and perform the return. See Figure 6.4 for the implementation of this action.
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6.3 Educational Opportunities for Operating Systems Students

At Marquette University, the modus oprerandi for teaching Operating Systems

is to use the Embedded Xinu platform. Our work brings Concurrent MiniJava to

the latest version of the Embedded Xinu kernel. It fosters learning with contiguous

pedagogical tools. Students at Marquette will build critical components of the Xinu

kernel throughout their one semester Operating Systems class. The skills acquired

in that class, including familiarity with Embedded Xinu, will carry over to Compiler

Construction and even courses that utilize networking and security concepts.

While learning how to implement an operating system, a student will inevitably

come across the necessity to implement critical sections of a kernel in assembly lan-

guage. There are some parts of the Embedded Xinu kernel, like the context switch,

that must directly touch the hardware. If a student can engage with assembly lan-

guage in more than one course, they will attain a greater degree of familiarity with

how programs work at such a low level. Using a version of Embedded Xinu that

supports the MiniJava API and monitors, students can see exactly how a program

works, from existing only in a text file, to assembly language, to creating a process,

and finally to executing instructions on bare metal.
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CHAPTER 7

Challenges Overcome

Throughout the course of this research, we have encountered roadblocks that

were challenging to overcome. In this chapter, we will outline two main issues and

explain how they were resolved.

7.1 Memory Offsets with the Stack and Frame Pointers

ARM stack frames use both the stack pointer and frame pointer to denote each

end of the frame. In industrial practice, the frame pointer stays fixed at the base of

the stack frame and the stack pointer can move as the frame grows down. Using this

technique, data in memory addressed by offsets from an area in the frame can use the

frame pointer as their base. Each offset would be some distance away from the frame

pointer. This is a good choice since the stack pointer is not guaranteed to stay in the

same location throughout the life of the frame. The Concurrent MiniJava compiler for

both MIPS and ARM uses a different technique. Instead of having a “floating” stack

pointer, the relative address of the stack pointer is decided at compile time. When

a stack frame is being set up during code generation, the size of the stack frame is

calculated and stored as a macro, from which each offset address is calculated.

Consider the code snippet in Figure 7.1, containing the beginning of a simple

MiniJava program. The mainmethod of this class prints “Hello world fromMiniJava!”

ten times using a while loop. We can see that the compiler has calculated the size

of this stack frame and included it as a macro called main framesize. The values

contained within r4 and r5 are being stored into the memory address found within

the stack pointer register, offset by values calculated with main framesize. During

development of the ARM backend, we decided to try using the frame pointer as the

base upon which offsets would be calculated. While this compiler was designed to be

extensible to other architecture. the MIPS version was written with design decisions

favoring MIPS. The MIPS backend uses the stack pointer for offsets and switching to

using the frame pointer for other architectures was not favorable and caused issues
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1 #include <arm.h>

2 .section .data

3 L0: .asciz "Hello␣world␣from␣MiniJava!"

4 .section .text

5 .align 4

6 .globl main

7 main:

8 #define main_framesize 16

9 push { fp , lr }

10 add fp , sp , #4

11 sub sp , sp , #main_framesize // create stack

frame

12 str r4 , [sp , #-8+ main_framesize]

13 str r5 , [sp , #-4+ main_framesize]

14 mov r5 , r6

Figure 7.1: Frame Size Offsets

as ARM functionality was increased. We use the stack pointer as our base for offset

calculation because this MiniJava compiler does not require the stack pointer to be

shifted elsewhere within a stack frame. In a language that does require this, using

the stack pointer would not be an appropriate choice for offsets.

7.2 Assembler Errors with Large Constants

The ARMv7 instruction set can only support operations on immediate values

that are smaller than 16 bits. Certain test programs used for debugging during the

development of the ARM back-end contain integer constants that are larger than 16

bits. Recall that the largest 2’s complement signed integer that can be represented in

16 bits is 215 − 1, or 32, 767. The MIPS implementation of the Concurrent MiniJava

compiler contained a function to check if a constant is 16 bits in size. This method,

CONST16(), found within Codegen.java, can be seen below. As a clarifying note, the

size of a Java short is 16 bits.

private static boolean CONST16(Tree.CONST c) {

return c.value == (short)c.value;

}

This method was used in the MIPS implementation of the compiler because

MIPS32 has the same constraint as ARMv7 regarding 16 bit constants. There are
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multiple solutions to this problem. The first is slightly complex. One could split

a large constant, 70, 000, for example into an upper and lower half. In signed 2’s

complement binary, 70, 000 is 00000000 00000001 00010001 01110000. This 32 bit

number, separated into four bytes for ease of reading, can be split into two two-byte

parts: 00000000 00000001 and 00010001 01110000. Assuming we are working in a

big-endian architecture, the “most significant” half is 00000000 00000001 and the

“least significant” half is 00010001 01110000. If we pad the lower half of the most

significant chunk up to 32 bits, we can load that into a register and perform a bitwise

OR with the least significant chunk to “rebuild” our full number inside of a register.

A second, perhaps more elegant, solution is to simply store the full number as

a 32 bit word in memory. We could append a .data section to the bottom of our

program and store the word there. We could then reference that word’s address in

memory through some offset of the either the stack pointer or frame pointer. This

might be an interesting exercise for a student to implement in the context of an

advanced compiler construction course. Of course, however, we wish to simplify this

endeavour for students learning about compilers for the first time. In order to aid

in the learning process, our third solution is the one that is implemented within the

ARM Concurrent MiniJava compiler.

The third solution is to let the assembler and linker do the work for us. The

ARMv7 instruction set contains a useful pseudo-instruction to abstract-away the same

process described in our second solution. We can use the ldr with the full text of the

constant prefixed with an equals sign. For example, if we wanted to load register r4

with the constant value 70, 000, we would write:

ldr r4, =70000

When an ARM assembler sees this syntax, it, along with a linker, implements

object code that creates a word, stores 70, 000 at its address, and references that word

from an offset. In Codegen.java, we can see this solution implemented in the visit
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1 Temp d0 = new Temp();

2 if (CONST16(e)) {

3 emit(OPER("mov\t‘d0 ,\t" + "#" + e.value , new Temp []{d0},

null));

4 return d0;

5 }

6 else {

7 emit(OPER("ldr\t‘d0 ,\t" + "=" + e.value , new Temp []{d0},

null));

8 return d0;

9 }

10 }

Figure 7.2: Implementing Pseudo-Instructions for Constants Larger than 16 Bits.

method for the CONST IR node, seen in Figure 7.2. In this case, we use CONST16()

to check if our constant e is 16 bits. If the constant is not 16 bits we know it must

be larger, so we use the pseudo-instruction syntax. We do not need to check if the

constant is less that 16 bits because it will be padded up to 16 bits in length.
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CHAPTER 8

Conclusion

8.1 Summary of Contributions

In this thesis we have presented the results of our research in improving the

Concurrent MiniJava compiler for the sake of compiler construction education. Our

version of this compiler not only supports the latest version of the Embedded Xinu

operating system for the Raspberry Pi 3B+, providing educational opportunities for

students learning about compilers, operating systems, and computer security. The

MiniJava language has an extended grammar to support access modifiers, provid-

ing additional learning opportunities for students taking coursework in programming

languages. It is our hope that future students in several areas will benefit from this re-

search effort and excel in their studies with an increased interest in compilers and gain

an appreciation for the many years of fundamental research that went into making

work like this possible.

8.2 Further Work

The most exciting and imminent application of this research is due to occur

during the Fall 2022 offering of COSC 4400/5400: Compiler Construction at Mar-

quette University. This latest iteration of the Concurrent MiniJava compiler will be

used as an instructional tool for the first time, hopefully delivering the results we

predict it will.

Natural extensions of this work include retargeting this compiler to additional

platforms. While the Embedded Xinu operating system runs on a handful of plat-

forms, it may be a worthwhile effort to consider implementing support for Linux

systems. The easiest and most efficient use of resources would be to target a ver-

sion of Linux that can be supported by a Raspberry Pi 3B+, like Raspbian OS. If

the MiniJava API could be extended to support commonly used Linux system calls,

MiniJava programs could be executed independently of Embedded Xinu.

An improvement can be made to the ARM backend of the compiler by intro-
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ducing PUSH and POP nodes into the intermediate representation tree. As discussed

in Chapter 4, the current ARM implementation does not push most volatile regis-

ters onto the stack via the push and pop opcodes. This avenue was explored, but

ultimately was not implemented due to the lack of robustness in the intermediate rep-

resentation. Refactoring the intermediate representation to include these additions

would add more support to languages that make heavy use of the stack and increase

the potential for stack-based language support.
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Appendices

Appendix A: Full Code Listing of helloworld.c
1 #include <stdlib.h>

2 #include <stdio.h>

3
4 int main(int argc , char *argv []) {

5 printf("Hello ,␣world!\n");

6
7 return 0;

8 }
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Appendix B: Full Code Listing of minijava.c
1 /* Embedded Xinu , Copyright (C) 2008. All rights reserved. */

2
3 #include <xinu.h>

4 #include <stdio.h>

5 #include <stdarg.h>

6 #include <stdlib.h>

7 #include <device.h>

8 #include <tty.h>

9 #include <memory.h>

10 #include <proc.h>

11 #include <monitor.h>

12 #include <yield.h>

13
14 syscall _readint(void)

15 {

16 int i = 0, c = 0;

17 c = kgetc ((int)&devtab[SERIAL0 ]);

18 while ((’\n’ != c) && (’\r’ != c) && (EOF != c))

19 {

20 if ((’0’ <= c) && (’9’ >= c))

21 {

22 i = i * 10 + c - ’0’;

23 }

24
25 c = kgetc ((int)&devtab[SERIAL0 ]);

26 }

27 kprintf("\r\n");

28 if (EOF == c)

29 return c;

30
31 return i;

32 }

33
34 syscall _printint(int i)

35 {

36 return kprintf("%d\r\n", i);

37 }

38
39 syscall _print(char *s)

40 {

41 return kprintf("%s", s);

42 }

43
44 syscall _println(void)

45 {

46 return kprintf("\r\n");

47 }

48
49 syscall _yield(void)

50 {

51 return yield();

52 }
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53
54 syscall _sleep(int time)

55 {

56 return sleep(time);

57 }

58
59 int *_new(int n, int init)

60 {

61 int size = (n + 2) * 4;

62 int *p = (int *) getmem(size);

63 bzero(p, size);

64 p[0] = moncreate ();

65 p[1] = init;

66 return p + 2;

67 }

68
69
70 syscall _lock(int *objAdder)

71 {

72 int *A = objAdder - 2;

73 monitor m = (monitor) * A;

74 return lock(m);

75 }

76
77 syscall _unlock(int *objAdder)

78 {

79 int *A = objAdder - 2;

80 monitor m = (monitor) * A;

81 return unlock(m);

82 }

83
84 syscall _threadCreate(int *threadObjAdder)

85 {

86 int *A = threadObjAdder - 1;

87 int *B = (int *)*A;

88 int *C = (int *)*B;

89 void *procadder = (void *)C;

90 static int nextcore = 0;

91 nextcore = (nextcore + 1) % 4;

92 return

93 ready(create

94 (procadder , INITSTK , INITPRIO , "MiniJavaThread", 1,

95 threadObjAdder), RESCHED_NO , nextcore);

96 }

97
98 void _BADPTR(void)

99 {

100 fprintf(CONSOLE , "FATAL␣ERROR:␣Null␣Pointer␣Exception !\n");

101 unsigned int cpuid;

102 cpuid = getcpuid ();

103 kill(currpid[cpuid]);

104 }

105
106 void _BADSUB(void)
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107 {

108 fprintf(CONSOLE , "FATAL␣ERROR:␣Index␣Out␣Of␣Bounds␣Exception

!\n");

109 unsigned int cpuid;

110 cpuid = getcpuid ();

111 kill(currpid[cpuid]);

112 }
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Appendix C: Code Listing of procEntryExit1(), procEntryExit2(), and

procEntryExit3() in ArmFrame
1 public void procEntryExit1(List <Tree.Stm > body) {

2 assignFormals(formals.iterator (), actuals.iterator (),

body);

3 assignCallees (0, body);

4 }

5
6 public void procEntryExit2(List <Assem.Instr > body) {

7 body.add(new Assem.OPER("\t//␣return␣from␣" + name , null ,

returnSink , null));

8 }

9
10 public void procEntryExit3(List <Assem.Instr > body) {

11 // for link regiter and frame pointer being pushed to the

top of the stack at the top of a frame

12 int frameSize = maxArgOffset - localsOffset + 8;

13 ListIterator <Assem.Instr > cursor = body.listIterator ();

14
15 // setup section info for a procedure

16 cursor.add(new Assem.OPER("\t.section␣.text", null , null ,

null));

17 cursor.add(new Assem.OPER("\t.align\t4", null , null , null

));

18 cursor.add(new Assem.OPER("\t.globl\t" + name , null , null

, null));

19 cursor.add(new Assem.OPER(name + ":", null , null , null));

20 // setup a macro for the size of the stack frame to be

created

21 cursor.add(new Assem.OPER("#define␣" + name + "_framesize

␣" + frameSize , null , null , null));

22
23 if (frameSize != 0) {

24 // create stack frame

25 cursor.add(new Assem.OPER("\tpush\t{␣fp ,␣lr␣}",

null , null , null));

26
27 cursor.add(new Assem.OPER("\tadd\tfp ,\tsp ,\t#4",

null , null , null));

28
29 cursor.add(new Assem.OPER("\tsub\tsp ,\tsp ,\t"

30 + "#" + name + "

_framesize\t\t//␣

create␣stack␣

frame",

31 new Temp []{SP}, new

Temp []{SP}, null)

);

32
33 body.add(new Assem.OPER("\tsub\tsp ,\tfp ,\t#4",

null , null , null));

34
35 body.add(new Assem.OPER("\tpop\t{␣fp ,␣lr␣}", null
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, null , null));

36 }

37
38 body.add(new Assem.OPER("\tbx\tlr", null , new Temp []{LR},

null));

39 }


